
GRID-BASED IMAGE REGISTRATION

William Gropp, Neill Miller & Jennifer Schopf
MCS Division, Argonne National Laboratory
Argonne, IL USA 60439

{gropp,neillm,schopf}@mcs.anl.gov

Eldad Haber & Stefen Heldmann
Mathematics & Computer Science, Emory University
Atlanta, GA USA 30322

{haber,heldmann}@mathcs.emory.edu

David Keyes & Tianzhi Yang
Applied Physics & Applied Mathematics, Columbia University
New York, NY USA 10027

{david.keyes,ty2109}@columbia.edu

Abstract We introduce and discuss preliminary experience with an application that has
vast potential to exploit the Grid for social benefit and offers interesting resource
assessment and allocation challenges, having real-time aspects: image registra-
tion. Image registration is generally formulated as an optimization problem that
satisfies constraints, such as coordinate displacements that are affine or volume-
preserving or that obey the laws of elasticity. Three-dimensional registration of
high-resolution images is computationally complex and justifies parallel imple-
mentation. In turn, ensembles of registration tasks exploit concurrency in the
simpler sense of job farming.

Registration is an elementary example of a much larger class of large-scale
mesh-based computations that are in principle amenable to execution on the
Grid, but are sensitive to workload-to-capability balance at synchronization points.
While better resource assessment and allocation tools lift all such applications,
reducing sensitivity to synchronization within an individual application is also
important. We therefore examine the potential for weakening the synchroniza-
tion sensitivity of general mesh-based bulk synchronous computations through
less restrictive programming paradigms.

Keywords: Medical image registration, asynchronous numerical algorithms, Grid-based pro-
cessing, MPI-based parallelization

2

Introduction

Imaging is exploding and, with it, so are the needs and opportunities for
image registration. A recent catalog of books and journals on imaging from a
single publisher [Springer 2006] lists 5 pages of imaging journals, 13 pages
of books on imaging techniques (CT, fMRI, ultrasound, etc.), 29 pages of
books on diagnostic imaging of specialized anatomical domains, and 6 pages
of books on radiotherapy and image-based intervention. Telling as well, with
respect to clinical applications, is the formation of a new Journal of Real-time
Image Processing.

Imaging applications are ripe for the Grid. The Globus-based MEDICUS
system has already “broken the medical image communication barrier” [ISI
2006], in the sense that raw images can be shared with unprecedented speed
and transparency. The communication breakthroughs of the Grid create oppor-
tunities in Grid-enabled processing, as well, by opening up vast possibilities
for registration of images that would previously not have simultaneously avail-
able.

Numerical computing on the Grid, of which image registration is an exam-
ple, is, in turn, only one of several categories of Grid-based applications, and
has not so far been a significant driver of the Grid overall. The Grid is yet
to be exploited by most computational scientists, though it is potentially very
useful for applications requiring real-time solution or exceptional amounts of
memory. This potential will be realized after two independent trends, each
with its own inertia, converge: better tools for understanding and harnessing
the dynamic performance capabilities of the Grid, and better asynchronous al-
gorithms implemented in consistency-relaxed parallel programming models.

A basic problem that motivates this work can be posed as follows: given a
number of images that require registration, an MPI-based program to perform
the registration, and a collection of Grid-enabled compute resources, compute
the registrations by a specified time or estimate for the user what portion of the
registrations can be completed before a given time. A currently available affine
linear registration code has complexity roughly linear in the voxel volume. The
target images are 10243. Our test images of 1283 voxels require approximately
5 minutes of processing on a commodity cluster of 8 dual nodes. The targets
should therefore take approximately two days to run on such a cluster. The
kernel that dominates CPU cycles is multivariate interpolation. The task is
easily partitioned into arbitrary working-set distributions by apportioning sub-
domains (subvolumes) of the image space to processors. The processing that
needs to be done to back out the parameters that specify the three-dimensional
affine map is negligible in comparison to the easily partitioned interpolation
work. However, there is synchronization at regular intervals between interpo-
lation steps. Although our demonstration is confined to affine registration, the

Grid-based Image Registration 3

techniques are extensible with the same computational issues to more general
registrations of clinical importance.

In Section 1, we consider the motivation for real-time registration, some
registration algorithms, an example of registration, and an initial feasibility
demonstration of registration recently conducted on the Grid. Section 2 backs
up from registration as a particular application and examines advances in asyn-
chronous algorithms more generally, in terms both of algorithms and software
infrastructure. We conclude in Section 3 with some speculations.

The philosophy of this presentation is that algorithms must be adapted or
created to bridge to “hostile” architectures to support applications, taking both
the applications and the architectures as givens. The interplay of applications
and architectures with algorithms is a two-way street, generally. Knowledge
of algorithms can influence the way applications are formmulated and the way
architectures are constructed. More often than otherwise, however, it is the
algorithms that must adapt to inflexible architecture and nonnegotiable formu-
lations of the application.

1. Image registration

Real-time registration has numerous applications. In medicine, alone, reg-
istration arises in many contexts. Diagnosis and surgery planning make use of
patient-to-reference anatomy registration. The evaluation of fitness for trans-
plants makes use of patient-to-patient registration. In addition, patient-to-self
registration of images taken at different times may be useful in monitoring
progress. Besides clinical applications, real-time registration arises in auto-
mated surveillance, in which the goal is to recognize people whose images are
stored in a database. In the area of robotics, manipulation of and navigation
in the environment depends upon recognition of objects, which can include
real-time registration aspects. Finally, we mention as a motivation for the im-
portance of performing image registration tasks quickly the novel technique of
super-resolution [Chung et al. 2006] which relies upon repeated registrations
of an object that is moving with respect to the viewer. As its name implies,
super-resolution is able to produce high-resolution images by comparing a se-
ries of low-resolution images of the same object. Intuitively, information at
sub-pixel resolution that is “lost” in any one image can be recovered from
staggered images in which the underlying information is captured in pixels
that are displaced by a fraction of a pixel cell. This powerful technique allows
a tradeoff between the quality of the instrument capturing the image in digital
form and the capability of the computer system processing the resulting data.

4 g p

Figure 1. Registration of hand images by a multilevel technique. The original pair of images
is in the upper left. The next four pairs of images show successive stages of the registration
process at successively finer resolutions, ending with the registered pair in the lower right.

Mathematical setting of registration

The typical mathematical setting of registration is optimization. One posits
an objective function whose minimization is designed to minimize mismatch
between a pair of images and seeks a transformation of one image into the
other. This sounds simple in principle, but the simplicity can be deceptive. One
must be careful, for instance, not to allow uncorrelated pixel-to-pixel matches
from a list of pixels in one image to those of another, or else continguity of
the transformation could be lost. Constraints may be imposed to preserve con-
tiguity, to preserve volume, to map certain key points, etc. Since the number
of constraints is generally vastly smaller than the number of parameters to be
determined in a deformation map of one image into another, regularization is
almost always required to remove ill-posedness.

Many optimization problems that arise in registration, as in other fields, re-
quire the solution of discretizations of elliptic partial differential equations;
hence numerical ill-conditioning is often present. The data sets may be large-
scale, with multiple billion-voxel images (thousand-fold resolution in each of
three dimensions) coming on line, requiring parallel computing for each regis-
tration, in addition to distribution of registration of multiple image pairs over
the Grid.

Grid-based Image Registration 5

T(x) R(x)

T(x+u)-R(x)

Figure 2. T (x) for a two-dimensional slice through the midplane of a head. R(x), a reference
image for the head. T (x + u) − R(x) after construction of a coordinate flow u.

The field of image registration is mathematically rich, with both new theory
and new heuristics playing roles in moving it forward.

Finally, in production mode, registration is obviously challenging compu-
tationally, with issues of transparent archiving, remote access, and security
requirements arising in conjunction with large data sets.

Mathematical descriptions of registration. The problem of image regis-
tration can be posed intuitively as follows [Modersitzki 2004]: “given a tem-
plate image and a reference image, find a transformation of the template image
such that it becomes similar to the reference image.” Images may be consid-
ered as fields over domains, in which a template image T (x) = T (x1, x2, x3)
and a reference image R(x) = R(x1, x2, x3) are given and a transformation
u(x) = [u1(x), u2(x), u3(x)] is sought such that T (x + u(x)) ≈ R(x). An
example of a pair of images to be registered is given in Figure 2.

The generality of the flow u(x) can be controlled by its parameterization.
A general affine map in two dimensions consists of just six parameters, inde-
pendent of the number of pixels in the image:

(
u1

u2

)
=

(
a
b

)
+

(
c d
e f

) (
x1

x2

)
. (1)

6

Even simpler than the general affine map shown above is a rotation and
translation controlled by just three parameters. Determination of the parame-
ters is through minimization in some norm of an objective function. A typical
example is

min
1
2
||T (x + u) − R(x)||2 + αS(u), (2)

where S is a regularization term and α is a weighting parameter that strikes
a compromise between similarity and regularity. The regularization may, for
instance, penalize lack of smoothness in u. Registration based on the mini-
mization of distance between two images, alone, is in general ill-posed. The
parameterization of the registration is also a form of regularization through the
choice of basis. A subspace regularization may be employed to restrict the
generality of u, for instance

min
1
2
||T (x + Qz) − R(x)||2. (3)

Besides minimizing the distance between images, one can minimize the entropy-
related concept of “mutual information” [Viola 1995], or normal gradient fields
[Haber & Modersitzki 2006], which is particularly useful for registration of im-
ages from two different modalities such as CT and MRI, or a number of other
objectives. Though the problem statements are simple, the solutions may not
be unique.

Multilevel algorithms [Haber & Modersitzki 2005] seek to overcome the
problem of multiple minima by successively registering the same pair of im-
ages at resolutions ranging from coarse to fine. While the mathematics is for-
mal, the motivation is very intuitive and has been exploited in many areas of
optimization that are plagued by multiple minima. Projections of the problem
into coarse spaces obscures the local minima, which can only be differentiated
at finer resolutions. As the fine structure is revealed, the registration settles
into a particular local minimum, which is hopefully the global one. Figure 1 il-
lustrates. If one imagines a properly rotationally oriented template hand being
moved continuously over the reference hand, one can envision nine or more lo-
cal minima, as first one, then two, then successively more fingers overlap, with
the best minimum obtained in the middle when all five appendages overlap.

There are many types of registration objectives, including those based on co-
locating landmarks, aligning principal axes, and correlating image intensities,
minimizing elastic deformation, and conserving volume. While the variety
of large, and the motivations that drive selecting among the choices beyond
the scope of this overview, the optimization setting provides a mathematical
framework, which leads to the computational data structures and the types of
operations that must be executed over them.

Grid-based Image Registration 7

Computational characteristics of registration

Typical contemporary registration problems may be two- or three-dimensional,
and may vary widely in discrete size from tens of KB to many GB per individ-
ual pixelated or voxelated image. Inheriting contemporary tools from computa-
tional optimization, the algorithmic building blocks of importance are Newton-
like nonlinear solvers [Kelley 1995], Krylov linear solvers [Greenbaum 1997],
multilevel [Briggs et al. 2000] and other linear preconditioners [saad 1996] to
solve the discretized problem, and multivariate spline interpolation [Bojanov
et al 1993] to allow the images to be compared at chosen sets of points. Large,
sparse matrix methods predominate. Domain decomposition leads to advan-
tageous surface-to-volume communication-to-computation ratios that permit
weak scaling in an implementation sense [Keyes 1998]; see the next section
for details. Multilevel preconditioners are capable of preserving weak scaling
in a convergence sense [Toselli & Widlund 2005].

Grid-based illustration of registration

To illustrate the potential for real-time registration on the Grid in a very
preliminary way that is representative of, but not pushing, the state of the art,
we consider a data set of 20 three-dimensional images of pig’s heart, each
128×128×64 8-bit voxels (resolved on a gray scale from 0 to 255) or 8 MB per
image. The images comprise a time series. One is taken as the reference, and
19 pairwise registrations are performed to study the deformations of the heart.
An SPMD code implemented in C and MPI to perform affine registration was
provided by co-author Heldmann. Its input is a pair of images, the reference
and one template, and the output of each execution is very compact – a set of 12
scalars describing the map. Such a compact output enables instant verification
of the correct execution of the code in distributed environments.

The facility employed for the test is the Skynet cluster at ISI, a collection
(at the time of writing) of 96 dual processor Intel P3 nodes, with a range of
clock ratings from 800 to 1200 MHz. The Web Services Grid Resources Al-
location and Management (WS-GRAM) [WS-GRAM 2006] component of the
Globus [Globus 2006] toolkit is used to distribute the registration tasks. The
GRAM service provides a single interface for requesting and using remote sys-
tem resources for the execution of “jobs.” The most common use of GRAM
is remote job submission and control. It is designed to provide a uniform,
flexible interface to job scheduling systems. GRAM does not provide schedul-
ing or resource brokering capabilities. A wide variety of metaschedulers and
resource brokers that leverage GRAM mechanisms have been developed by
other projects. WS-GRAM was released in July 2006 and it is expected that
the various metaschedulers and resource brokers of Globus will be integrated
into it.

8

WS-GRAM provides rich job description and resource provisioning capa-
bilities. Among other objectives, such as optimizing throughput by matching
requirements to resources, WS-GRAM can allocate jobs so as to minimize ex-
pected overall latency, given an existing pool of resources. This is the sense in
which we apply it here. Our assumption is that in medical applications, infor-
mation derived from registration has time-value. If it does not return in time
to enter into a physician’s decision-making process, it may have little value at
all. This suggests other problem formulations, which we will examine in the
future, such as ordering the jobs so that the partial results of greatest value are
returned first. This project (in progress) provides a preliminary demonstration
of the registration application together with the WS-GRAM harness.

In the test reported here, each registration job was launched with 16-way
parallelism at the MPI level, on 8 dual-procesor nodes. Up to 11 jobs could
be executed at once, as mediated by the underlying PBS scheduler [OpenPBS
2003]. In the suboptimal, preliminary test reported on here, all jobs in a given
batch must report complete before a subsequent batch is launched.

The result was the reduction in latency of a “sequential” processing of 19
MPI-parallel jobs that required 51.77 minutes to 6.95 minutes in the Grid en-
vironment, a speedup of 7.5.

Our near-term plans call for expansion of this registration test in many di-
mensions. The entire TeraGrid will be used as a resource pool. Our next
data sets will be made up of images of size 512 × 512 × 512, or 1GB each.
Each pairwise registration job (as currently) will be run with tightly coupled
SPMD parallelism. Jobs will be launched individually from a queue based on
resource monitoring. A strategy will be developed for gaining the medically
most relevant information first. Finally, in view of the size of the data sets, a
strategy will be developed for overcoming transmission latency that is syner-
gistic with the multilevel character of the registration algorithm, as discussed
above. Specifically, coarse-grid representations of the problem can be sent be-
fore the full fine-grid representations, so that processing can begin while the
fine-grid representations are still en route.

Our longer term objective includes development of parallel algorithms for
registration that are sufficiently asynchronous that the Grid environment can
be employed even within a single registration. This is not yet necessary for
medical images of contemporary sizes, but it is a technology driver. Such
algorithms would be useful for many problems besides real-time registration,
which is the subject of the second part of this paper.

Grid-based Image Registration 9

2. The challenge of asynchronous algorithms for Grid
hosting of PDE-based systems

The image registration challenge in the first part of this paper is addressed at
the relevant, but limited scale of SPMD, bulk synchronous processing. There
are numerous applications in addition to image registration in which it is desir-
able to exploit the Grid to occasionally grab exceptional amounts of memory
for highly resolved simulations, or in which it is desired to take over excep-
tional levels of processing power. As an instance of the first, an exceptional
simulation might use a close to first-principles model to calibrate a multiscale
model, which would then be used for the majority of production at a center.
As instances of the second, flood, firespread, or pathogen transport prediction
models might need to be run ahead of real time in emergencies. Or real-time
control of a massive experimental device, such as ITER [ITER 2006], might
be allowed to take over Grid-availed resources for the exceptional experimen-
tal “shot.” In these contexts, we must consider individual large jobs, not a large
ensemble of small jobs. Historically, the Grid has supported very few claims
for success in this realm. PDE-based simulations are naturally implemented
in bulk synchronous mode, in which the work load for each processing ele-
ment is carefully matched to its capabilities, so that idleness is minimized at
synchronization points.

Many issues must be addressed to make PDE-simulations a reality for the
dynamic environment of the Grid. One of them is fault tolerance. However, in
the limited scope of this contribution, we assume that processors and networks
are reliable and seek algorithmic tolerance of dynamic performance, or actual
synergisms between algorithms and the dynamic performance Grid environ-
ment.

Concurrency through domain decomposition

PDE-based codes are nearly universally parallelized with domain decom-
position – nesting a serial algorithm that (approximately or exactly) solves a
PDE on a given domain to a subdomain’s worth of data inside of an iterative
process that adjusts the values on the interfaces or overlaps between the sub-
domains to consistency. Such a decomposition preserves the volume-work to
surface-communication ratio in the weak scaling limit as work per processor
remains fixed and both the work and the number of processors are scaled in
proportion. For domain decomposition methods to be weak-scalable, it is nec-
essary that the individual problems on subdomains be well load balanced and
that the number of outer iterations be bounded, independently of problem res-
olution and processor granularity (one implies the other) in the limit of weak
scaling. Theory constructively showing how to obtain nearly resolution- and
granularity-independent convergence rates is well developed for many prob-

10

lems [Toselli & Widlund 2005] and freely available software exists that deliv-
ers this performance in practice [hypre 2006, PETSc 2006, Trilinos 2006]. The
price of convergence-rate optimality is often the solution of auxiliary problems
in reduced dimensional spaces. These auxiliary problems are not as scalable
as the original union of independent fine-scale problems, and their implemen-
tation requires extreme care. Nevertheless, a families of multilevel iterative
methods whose parameters can be tuned to application and architecture exist,
which are mature in their analysis and software aspects. However, they pre-
sume predictable load per process since synchronization points are relatively
frequent.

For nonlinear problems, a popular family of methods is Newton-Krylov-
Schwarz [Cai et al. 1993]. This is a triply-nested loop domain-decomposed
algorithm, with an outer Newton loop, which evaluates a nonlinear residual at
a given solution iterate, and solves a linear system with the nonlinear residual
as the right-hand side and the Jacobian of the residual as the system matrix. A
multiple of the resulting solution is added to the current iterate. Krylov iter-
ation is employed to solve the linear system with the Jacobian. Each Krylov
loop begins with a linear solution iterate and applies a Jacobian vector product
and computes some inner products, which determine coefficients with which to
update the linear iterate. Both the Newton and Krylov loops are synchronous
and essentially update a vector defined over the domain with AXPY operations.
Inside of the Krylov loop, subspace iterations of Schwarz type are employed
to precondition the linear system. The Schwarz iterations are generally a mix-
ture of multiplicative and additive projections into subspaces, with the bulk of
the work being done concurrently on each processor within subdomains. To
summarize the technique, within each level of the triply nested loop, there is
a decomposition into concurrent tasks by domain. Typically, one subdomain’s
worth of work is assigned to each process. Processes must communicate thin
regions near their boundaries with neighbors, and they must cooperate glob-
ally in performing inner products (AllReduce commutatives) and in solving
reduced-dimensional problems. Typically, one process is mapped to each pro-
cessor, and processors synchronize at the AllReduce points.

Algorithmic adaptation

No computer system is well-balanced for all computational tasks since dif-
ferent tasks (such as concurrent neighbor communication, global reduction,
concurrent local residual evaluation, concurrent local recurrences, etc.) stress
different parts of the processor-memory-network system. By being aware of
which algorithmic phases are limited by which aspect of hardware or system
software, one can adapt algorithms to take advantage of the strengths or miti-
gate the weaknesses of given hardware. Detailed phase-by-phase performance

Grid-based Image Registration 11

analysis of an unstructured PDE-based code for aerodynamics led to the inspi-
ration of the Gordon Bell “Special Prize,” a share of which was first awarded
to a subset of the co-authors in 1999 [Anderson et al. 1999]. While many per-
formance optimizations were studied in that and other papers for the massively
parallel solution of PDE-based problems, one parasitic loss of performance
that was noted in the strong scaling limit, but not addressed, was idleness at
synchronization bottlenecks. In context, this idleness was due to the difficulty
of load balancing increasingly smaller and also increasingly less homogeneous
partitions. For instance, as subdomains get smaller, the distribution of ratios
of boundary and interface nodes to interior nodes gets broader. In the context
of the Grid, these same synchronization points will lead to idleness for other
reasons, even in weak scaling.

Historically, there have been a number of noteworthy adaptations to high
latency and low bandwidth in parallel systems. Reduction of communication
or replacement of communication with extra work will generally be useful
adaptations in the Grid environment.

Garbey and Tromeur-Dervout [2000] introduced the C(p, j, q) schemes in
an attempt to hide interprocessor latency by extrapolating data messages from
neighboring processes in a time integration process, rather than waiting for the
messages to appear before computing locally with their data as inputs. Roll-
backs were used if the data upon arrival proved to be too inconsistent with
the extrapolated values. Intuitively, this radical procedure has a chance of be-
ing successful, since for the problems considered, the extrapolations had to be
correct in the low-spectrum eigenmodes only. Error in the the high-spectrum
eigenmodes decays rapidly. For a given accuracy-work tradeoff, the technique
has a payoff region.

Cai and Sarkis [1999] introduced an algorithm called restricted additive
Schwarz (RAS), which was discovered accidentally by turning off certain com-
munications while debugging. Observing that not only efficiency per iteration
but also convergence rate improved, the researchers were able to prove why,
for many problems the updates provided by the turned off communication were
unnecessary and even detrimental. RAS is now the default form of Schwarz
preconditioning in PETSc [PETSc 2006].

Additive versions of algorithms are often available where multiplicative ver-
sions are the default. The additive versions may converge more slowly, but
can sometimes be virtually as good as their mathematically more pedigreed
cousins. The AFACx version of the asynchronous fast adaptive composite grid
method is shown in [Lee et al. 2003] to be nearly as good as AFAC in practice,
for instance. Such algorithms have received a bad rap historically due to theory
which can be pessimistic in the worst case [Chazan & Miranker 1969].

Cai and Keyes [2002] introduced a nonlinear form of Schwarz precondi-
tioning, called Additive Schwarz Preconditioned Inexact Newton (ASPIN),

12

which was motivated by nonlinear convergence theory, but turns out to relax
the frequency of global synchronization in Newton-Krylov methods rather dra-
matically, while simultaneously unbalancing domain-decomposed work. Es-
sentially, the method introduces process-scale Newton iterations inside of the
outer Newton iteration. Most of the work of the nonlinear convergence shifts
from the global outer iteration to the local inner iterations, with the result
that the outer iteration converges in very few Newton steps, and therefore few
global synchronizations. There is often a substantial reduction of work overall,
but more importantly, the work that remains occurs in local subsets of commu-
nicating processors. However, unlike the traditional Newton-Krylov-Schwarz
method, whose work-per-processor can be well load-balanced up to the limit
of too small the average size of the subdomains on each processor, ASPIN has
an unpredictable and potentially poorly balanced distribution of subdomain
work. This is because the different nonlinear systems that are iterated to con-
vergence on each subdomain may take different numbers of internal iterations.
Fortunately, these internal iterations are not synchronized with those of other
subdomains. The processors governing different subdomains synchronize only
at outer loops. On a tightly coupled parallel machine, ASPIN is difficult to rec-
ommend, because of this feature of unbalanced inner loop work. However, the
structure of the computation lends itself well to the Grid. In the spirit of Eisen-
hower’s maxim that “one way to solve a big problem is to make it bigger,”
ASPIN folds its uncertain load imbalance into the uncertain performance guar-
antee of the processors in a Grid-based computation, and harvests cycles when
available. The tools created as part of the WS-GRAM infrastructure to monitor
and predict availability and so allocate work can be combined with tools that
predict the work in ASPIN processes based on recent history so that a collec-
tion of ASPIN processes can in principle share resources synergistically with
other Grid-enabled jobs.

Transcending particular algorithmic inventions, we also propose an asyn-
chronous programming style that loans itself to many bulk synchronous al-
gorithms that must confront inefficiency through idleness at synchronization
points, whether due to internal work imbalance or external dynamic availabil-
ity. The synchronization in many scientific simulation codes, including PDE-
based codes, is artifactual. At a synchronization point there is often lots of
work ready to perform whose data needs are completely local; however our
programming styles do not allow an independent user thread from the same
overall process to begin executing while the synchronizing thread is blocked.

The critical path in a Newton-Krylov code, abstracted to a sufficiently high
level is: . . ., linear_solve, bound_step, update, linear_solve, bound_step,
update, We often insert into the critical path tasks that could be performed
less synchronously, on which the tasks above do not critically depend, such as
refreshing the Jacobian with which the linear solver is performed, or refresh-

Grid-based Image Registration 13

ing the preconditioner for that Jacobian. It is well studied theoretically that
Newton and Krylov methods are robust with respect to less frequent updates
to these linear operators than once per step, under many circumstances. Con-
vergence degrades if refreshing is long postponed, but for the sake of synchro-
nization, either of these updates could be invested in to varying degrees. We
also frequently insert global convergence testing and parameter adaptation on
the critical path above more frequently than necessary. They can be partially
completed on free cycles and thrown onto the critical path less frequently than
is generally done today. Other tasks such as I/O, data compression or archiv-
ing, data visualization, or data mining, which must be or can be performed
directly on the parallel cluster, represents useful work that is, to a significant
degree, not tightly synchronized with respect to the solution loop above.

To take full advantage of such asynchronous algorithms, we need to de-
velop greater expressiveness in scientific programming, by creating threads
with relaxed data requirements and dynamically adjusting the relative priority
of threads. This will require “associative communication” models such as the
one recently addressed in [Browne et al. 2004].

3. Convergence of Grid computing and scientific
computing

As illustrated in the context of medical image registration, there are numer-
ous scientific applications today that can exploit the Grid in all of its hetero-
geneity without ill effect and to advantage, even in a hybrid model of nearly
independent batched jobs each of which is a tightly coupled application. Tools
such as WS-GRAM make it increasingly practical to schedule the indepen-
dent jobs in such a way as to meet real time applications requirements, or at
least to know when it is physically impractical to meet them, so that cycles are
not wasted and alternatives not deferred. Many of the agendae of large-scale
simulation share workflow characteristics with the image registration task con-
sidered herein. Computational science is not about individual large-scale anal-
yses, done fast and “thrown over the wall.” Both results and their sensitivities
are desired; often multiple operation points to be simulated are known a pri-
ori, rather than sequentially. Sensitivities may be fed back into optimization
process. Full PDE analyses may also be inner iterations in a multidisciplinary
computation. In such contexts, “petaflop/s” may mean 1,000 analyses running
somewhat asynchronously with respect to each other, each at 1 Tflop/s – clearly
a less daunting challenge and one that has better synchronization properties for
exploiting “The Grid” – than 1 analysis running at 1 Pflop/s.

However, even perfect knowledge of resource capabilities at every moment
and perfect load balancers will not redeem the Grid for all SPMD implementa-
tions of PDE simulations. The cost of rebalancing is frequently too large to do

14

on the short intervals required in the dynamic environment of the Grid, and the
Amdahl penalty for failing to rebalance is fatal. A combination of better Grid
monitoring and allocation tools and less synchronous algorithms is required
for the greatest ultimate success.

Less synchronous algorithms for traditionally tightly coupled PDE-based
simulations are highly desirable for reasons independent of the Grid. For the
petascale machines of which we expect to take delivery in 2008 and beyond,
consisting of 105 and more processors, it will be highly desirable to have such
methods.

Natural forces with both the Grid community and the PDE simulation com-
munity are converging independently towards a rendezvous that it is already
practical at some scale. We are cautiously optimistic about a much more sig-
nificant rendezvous ahead.

References
Anderson, W. K, Gropp, W. D., Kaushik, D. K., Keyes, D. E. and Smith, B. F. (1999). Achieving

High Sustained Performance in an Unstructured Mesh CFD Application, in “Proceedings of
SC’99,” IEEE Computer Society, Los Alamitos.

Bojanov, B., Hakopian, H. and Sahakian, B. (1993). Spline Functions and Multivariate Inter-
polation, Springer, New York.

Briggs, W. L., Henson, V. E. and McCormick, S. F. (2000). A Multigrid Tutorial, SIAM, Philadel-
phia.

Browne, J. C., Yalamanchi, M., Kane, K. and Sankaralingam, K. (2004). General Parallel Com-
putations on Desktop Grid and P2P Systems, in “Proceedings of LCR 2004: Seventh Work-
shop on Languages, Compilers & Runtime Support for Scalable Systems,” University of
Houston, Houston.

Cai, X.-C., Gropp, W. D., Keyes, D. E. and Tidriri, M. D. (1993). Newton-Krylov-Schwarz
Methods in CFD, in “Numerical Methods for the Navier-Stokes Equations” (F.-K. Hebeker
et al., eds.), Vieweg, Braunschweig.

Cai, X.-C. and Sarkis, M. (1999). A Restricted Additive Schwarz Preconditioner for General
Sparse Linear Systems, SIAM J. Sci. Comput. 21:792–797.

Cai, X. C. and Keyes, D. E. (2002). Nonlinearly Preconditioned Inexact Newton Algorithms,
SIAM J. Sci. Comp. 24:183-200.

Chazan, D. and Miranker, W. (1969). Chaotic Relaxation, Linear Alg. Applics. 2:199–222.
Chung, J., Haber, E. and Nagy, J. (2006). Numerical Methods for Coupled Super-Resolution

Inverse Problems 22:1261-1272.
Garbey, M. and Tromeur-Dervout, D. (2000). A Parallel Adaptive Coupling Algorithm for Sys-

tems of Differential Equations, J. Comput. Phys. 161: 401-427.
Globus (2006). http://www.globus.org/toolkit/.
Greenbaum, A. (1997). Iterative Methods for Solving Linear Systems, SIAM, Philadelphia.
Haber, E. and Modersitzki, J. (2006). A Multilevel Method for Image Registration, SIAM J. Sci.

Comput. 27:1594–1607.
Haber, E. and Modersitzki, J. (2006). Intensity gradient based registration and fusion of multi-

modal images, Medical Image Computing and Computer-Assisted Intervention - MICCAI
(2), pp. 726-733.

hypre (2006). http://www.llnl.gov/CASC/linear solvers/.

Grid-based Image Registration 15

ISI, Information Sciences Institute, University of Southern California (2006). Breaking the Med-
ical Image Communication Barrier, http://www.isi.edu/news/news.php?story=152.

ITER (2006). http://www.iter.org/.
Kelley, C. T. (1995). Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadel-

phia.
Keyes, D. E. (1998). How Scalable is Domain Decomposition in Practice?, in “Proceedings

of the 11th Intl. Conf. on Domain Decomposition Methods” (C. H. Lai, et al., eds.), pp.
286–297, DDM.ORG, New York.

Lee, B., McCormick, S. F., Philip, B. and Quinlan, D. J. (2003). Asynchronous Fast Adaptive
Composite-Grid Methods: Numerical Results, SIAM J. Sci. Comput. 25:682–700.

Modersitzki, J. (2004). Numerical Methods for Image Registration, Oxford University Press,
Oxford.

OpenPBS (2003). http://www.openpbs.org/.
PETSc (2006). http://www-unix.mcs.anl.gov/petsc/.
Saad, Y. (1996). Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston.
Springer Verlag (2006). Journals and New Books in Imaging, 56 pp.
Toselli, A. and Widlund O. (2005). Domain Decomposition Methods – Algorithms and Theory,

Springer, New York.
Trilinos (2006). http://software.sandia.gov/trilinos/.
Viola, P. (1995). Alignment by Maximization of Mutual Information, Ph.D. thesis, Massachusetts

Institute of Technology.
WS-GRAM (2006). http://www.globus.org/toolkit/docs/3.2/gram/key/.

